Trainwave CLI Guide
The Trainwave Command Line Interface (CLI) is your primary tool for managing machine learning jobs from your terminal. This guide covers all available commands with practical examples.
Installation
Install the CLI using pip:
pip install trainwave-cli
Verify the installation:
wave --version
Quick Start
# Login to your account
wave auth login
# Create a new configuration
wave config
# Launch a training job
wave jobs launch
# Monitor the job
wave jobs logs -f
Authentication
Login
# Interactive browser login (recommended)
wave auth login
# Login with API key
wave auth set-token your-api-key
# Verify login
wave auth whoami
Token Management
# Create a new API token
wave auth create-token --name "CI/CD Token"
# List active tokens
wave auth list-tokens
# Revoke a token
wave auth revoke-token token-id
Job Management
Launching Jobs
# Launch with default config
wave jobs launch
# Launch with specific config file
wave jobs launch --config custom-config.toml
# Launch with overrides
wave jobs launch --gpu-type "RTX A5000" --gpus 2
# Launch in a specific project
wave jobs launch --project p-abc123
Monitoring Jobs
# List all jobs
wave jobs list
# List running jobs
wave jobs list --status running
# List jobs for a specific project
wave jobs list --project p-abc123
# Get detailed job status
wave jobs status j-xyz789
# Stream logs in real-time
wave jobs logs -f j-xyz789
# View GPU metrics
wave jobs metrics j-xyz789 --type gpu
Job Control
# Cancel a job
wave jobs cancel j-xyz789
# Stop a job gracefully
wave jobs stop j-xyz789
# Restart a failed job
wave jobs restart j-xyz789
Configuration
Interactive Configuration
# Open web UI for configuration
wave config
# Create config in specific location
wave config --output custom-config.toml
Validate Configuration
# Validate current config
wave config validate
# Validate specific config file
wave config validate --file custom-config.toml
Resource Management
GPU Management
# List available GPU types
wave gpus list
# Show GPU pricing
wave gpus pricing
# Check GPU availability
wave gpus availability
Storage Management
# List artifacts
wave storage list
# Download artifacts
wave storage download j-xyz789 --output ./artifacts
# Clean up old artifacts
wave storage cleanup --older-than 30d
Secrets Management
Setting Secrets
# Set a single secret
wave secrets set API_KEY=xyz123
# Set multiple secrets
wave secrets set \
WANDB_API_KEY=abc123 \
HUGGINGFACE_TOKEN=def456
# Set secret from file
wave secrets set-file GITHUB_KEY=./github_key.txt
Managing Secrets
# List all secrets
wave secrets list
# List secrets for specific project
wave secrets list --project p-abc123
# Delete a secret
wave secrets unset API_KEY
# Rotate a secret
wave secrets rotate API_KEY
Project Management
Project Operations
# List projects
wave projects list
# Create new project
wave projects create "MNIST Training"
# Set default project
wave projects set-default p-abc123
Advanced Usage
Batch Operations
# Cancel all running jobs
wave jobs list --status running | xargs -I {} wave jobs cancel {}
# Download artifacts from multiple jobs
wave jobs list --status completed | xargs -I {} wave storage download {}
CI/CD Integration
# Non-interactive authentication
export TRAINWAVE_API_KEY=your-api-key
wave jobs launch --non-interactive
# Wait for job completion
wave jobs wait j-xyz789 --timeout 1h
Custom Scripts
# Get job info in JSON format
wave jobs status j-xyz789 --json
# Use with jq for parsing
wave jobs status j-xyz789 --json | jq .status
Environment Variables
The CLI respects the following environment variables:
Variable | Description | Example |
---|---|---|
TRAINWAVE_API_KEY | API key for authentication | export TRAINWAVE_API_KEY=xyz123 |
TRAINWAVE_PROJECT | Default project ID | export TRAINWAVE_PROJECT=p-abc123 |
TRAINWAVE_CONFIG | Custom config file path | export TRAINWAVE_CONFIG=./config.toml |
Common Workflows
1. Training Workflow
# Start training
JOB_ID=$(wave jobs launch --config train.toml --json | jq -r .id)
# Monitor progress
wave jobs logs -f $JOB_ID
# Download results
wave storage download $JOB_ID --output ./results
2. Experiment Management
# Launch multiple experiments
for lr in 0.001 0.01 0.1; do
wave jobs launch --config base.toml \
--env LEARNING_RATE=$lr \
--name "experiment-lr-${lr}"
done
# Monitor all experiments
wave jobs list --format wide
3. Resource Cleanup
# Cancel old running jobs
wave jobs list --status running --older-than 24h | \
xargs -I {} wave jobs cancel {}
# Clean up old artifacts
wave storage cleanup --older-than 7d
Troubleshooting
Common Issues
-
Authentication Failed
# Verify authentication wave auth whoami # Re-authenticate wave auth login --force
-
Job Failed
# Check detailed status wave jobs status j-xyz789 --verbose # View error logs wave jobs logs j-xyz789 --tail 100
-
Resource Issues
# Check GPU availability wave gpus availability # View resource quotas wave quota show
Support
- CLI issues: cli-support@trainwave.ai
- Feature requests: feature-requests@trainwave.ai
- Bug reports: Create an issue