Trainwave API Reference
The Trainwave REST API enables you to programmatically control and monitor your machine learning jobs. This reference provides detailed information about available endpoints, authentication, and example usage.
Quick Start
# Authentication using API key
curl -H "Accept: application/json" \
-H "X-API-KEY: your-api-key" \
https://backend.trainwave.ai/api/v1/jobs/
# Create a new job
curl -X POST \
-H "Accept: application/json" \
-H "X-API-KEY: your-api-key" \
-H "Content-Type: application/json" \
-d '{
"name": "mnist-training",
"project": "p-abc123",
"gpu_type": "RTX A5000",
"gpus": 1
}' \
https://backend.trainwave.ai/api/v1/jobs/
Base URL
All API requests should be made to: https://backend.trainwave.ai/api/v1/
Authentication
See the Authentication Guide for detailed information about securing your API requests.
Response Format
All responses follow this standard format:
{
"success": true,
"data": {
// Response data here
},
"meta": {
"request_id": "req_abc123",
"timestamp": "2024-03-21T12:00:00Z"
}
}
Error responses:
{
"success": false,
"error": {
"code": "error_code",
"message": "Human-readable error message",
"details": {
// Additional error details
}
},
"meta": {
"request_id": "req_xyz789",
"timestamp": "2024-03-21T12:00:00Z"
}
}
Rate Limits
- Free tier: 100 requests per minute
- Pro tier: 1000 requests per minute
- Enterprise tier: Custom limits
Rate limit headers are included in all responses:
X-RateLimit-Limit: 100
X-RateLimit-Remaining: 95
X-RateLimit-Reset: 1616876400
Available Endpoints
Jobs
List Jobs
GET /api/v1/jobs/
Query parameters:
org
(string): Organization IDproject
(string): Project IDstatus
(string): Filter by status (running, completed, failed)limit
(integer, default: 20): Number of results per pageoffset
(integer): Pagination offset
Example request:
curl -H "X-API-KEY: your-api-key" \
"https://backend.trainwave.ai/api/v1/jobs/?project=p-abc123&status=running"
Example response:
{
"success": true,
"data": {
"count": 25,
"next": "https://backend.trainwave.ai/api/v1/jobs/?offset=20",
"previous": null,
"results": [
{
"id": "j-789xyz",
"rid": "training-job-1",
"created_at": "2024-03-21T09:00:00Z",
"state": "RUNNING",
"project": "p-def456",
"owner": {
"id": "u-abc123",
"email": "user@example.com",
"username": "johndoe"
},
"total_cost": 25.5,
"gpu_hours": 2.5,
"metrics": {
"gpu_utilization": 95.2,
"memory_usage": 14.3
}
}
]
}
}
Create Job
POST /api/v1/jobs/
Request body:
{
"name": "mnist-training",
"project": "p-abc123",
"description": "Training MNIST classifier",
"gpu_type": "RTX A5000",
"gpus": 1,
"cpu_cores": 4,
"memory_gb": 16,
"hdd_size_mb": 51200,
"image": "trainwave/pytorch:2.3.1",
"setup_command": "pip install -r requirements.txt",
"run_command": "python train.py",
"env_vars": {
"WANDB_API_KEY": "xxx",
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512"
},
"expires": "4h",
"compliance_soc2": true
}
Example using Python:
import requests
api_key = "your-api-key"
headers = {
"Accept": "application/json",
"X-API-KEY": api_key,
"Content-Type": "application/json"
}
job_config = {
"name": "mnist-training",
"project": "p-abc123",
"gpu_type": "RTX A5000",
"gpus": 1,
# ... other configuration
}
response = requests.post(
"https://backend.trainwave.ai/api/v1/jobs/",
headers=headers,
json=job_config
)
if response.status_code == 201:
job = response.json()["data"]
print(f"Created job: {job['id']}")
Get Job Details
GET /api/v1/jobs/{job_id}/
Example response:
{
"success": true,
"data": {
"id": "j-789xyz",
"name": "mnist-training",
"state": "RUNNING",
"created_at": "2024-03-21T09:00:00Z",
"started_at": "2024-03-21T09:01:00Z",
"finished_at": null,
"project": "p-abc123",
"gpu_type": "RTX A5000",
"gpus": 1,
"cpu_cores": 4,
"memory_gb": 16,
"cost_per_hour": 2.5,
"total_cost": 5.0,
"metrics": {
"gpu_utilization": 95.2,
"memory_usage": 14.3,
"network_rx_bytes": 1024000,
"network_tx_bytes": 512000
},
"artifacts": {
"model": "s3://bucket/model.pt",
"logs": "s3://bucket/logs.txt"
}
}
}
Stop Job
POST /api/v1/jobs/{job_id}/stop/
Example using curl:
curl -X POST \
-H "X-API-KEY: your-api-key" \
https://backend.trainwave.ai/api/v1/jobs/j-789xyz/stop/
Projects
List Projects
GET /api/v1/projects/
Query parameters:
org
(string): Organization IDlimit
(integer, default: 20): Results per pageoffset
(integer): Pagination offset
Example response:
{
"success": true,
"data": {
"count": 2,
"results": [
{
"id": "p-abc123",
"name": "MNIST Classification",
"description": "Image classification research",
"created_at": "2024-03-01T12:00:00Z",
"organization": "org-xyz789",
"active_job_count": 2,
"total_job_count": 15,
"total_cost": 150.25
}
]
}
}
Organizations
List Organizations
GET /api/v1/organizations/
Example response:
{
"success": true,
"data": {
"count": 2,
"results": [
{
"id": "org-xyz789",
"name": "Research Team",
"created_at": "2024-01-15T08:00:00Z",
"credit_balance": 1000.5,
"member_count": 5,
"project_count": 3
}
]
}
}
Metrics
Get Job Metrics
GET /api/v1/metrics/{metric_name}/?job_id={job_id}
Available metrics:
cpu
: CPU utilizationmemory
: Memory usagenetwork
: Network I/Ogpu_utilization
: GPU utilizationgpu_memory
: GPU memory usagedisk
: Disk I/O
Example request:
curl -H "X-API-KEY: your-api-key" \
"https://backend.trainwave.ai/api/v1/metrics/gpu_utilization/?job_id=j-789xyz"
Example response:
{
"success": true,
"data": {
"metric": "gpu_utilization",
"job_id": "j-789xyz",
"values": [
[1711027200, 95.2],
[1711027260, 94.8],
[1711027320, 96.1]
],
"unit": "percent",
"interval": "60s"
}
}
SDKs and Libraries
Official SDKs:
Webhooks
Trainwave can send webhooks for important events. Configure webhooks in your organization settings.
Example webhook payload:
{
"event": "job.completed",
"job": {
"id": "j-789xyz",
"state": "COMPLETED",
"exit_code": 0,
"duration": 3600,
"cost": 25.5
},
"timestamp": "2024-03-21T10:00:00Z",
"webhook_id": "wh_abc123"
}
Best Practices
-
Rate Limiting
- Implement exponential backoff
- Cache responses when appropriate
- Use bulk operations when possible
-
Error Handling
- Always check the
success
field - Log the
request_id
for debugging - Handle rate limits gracefully
- Always check the
-
Security
- Never expose API keys in client-side code
- Rotate API keys regularly
- Use environment variables for sensitive data
-
Monitoring
- Track rate limit headers
- Monitor webhook delivery status
- Log API response times
Support
- Technical issues: support@trainwave.ai
- API status: status.trainwave.ai
- Developer community: Discord